

AQA Computer Science A-Level

4.2.1 Data structures and
abstract data types

Advanced Notes

www.pmt.education

Specification:

4.2.1.1 Data structures:

Be familiar with the concept of data structures.
4.2.1.2 Single- and multi-dimensional arrays (or equivalent):

Use arrays (or equivalent) in the design of solutions to simple problems.
4.2.1.3 Fields, records and files:

Be able to read/write from/to a text file.
Be able to read/write data from/to a binary (non-text) file.

4.2.1.4 Abstract data types/data structures:
Be familiar with the concept and uses of a:

● Queue
● Stack
● Graph
● Tree
● Hash table
● Dictionary
● Vector

Be able to distinguish between static and dynamic structures and
compare their uses, as well as explaining the advantages and disadvantages
of each.

Describe the creation and maintenance of data within:
● Queues (linear, circular, priority)
● Stacks
● Hash tables

4.2.2.1 Queues:
Be able to describe and apply the following to linear queues, circular

queues and priority queues:
● add an item
● remove an item
● test for an empty queue
● test for a full queue

www.pmt.education

4.2.3.1 Stacks:
Be able to describe and apply the following operations:

● push
● pop
● peek or top
● test for empty stack
● test for stack full

4.2.4.1 Graphs:

Be aware of a graph as a data structure used to represent more
complex relationships.

Be familiar with typical uses for graphs.
Be able to explain the terms:

● graph
● weighted graph
● vertex/node
● edge/arc
● undirected graph
● directed graph.

Know how an adjacency matrix and an adjacency list may be used to
represent a graph.

Be able to compare the use of adjacency matrices and adjacency lists.

4.2.5.1 Trees (including binary trees):

Know that a tree is a connected, undirected graph with no cycles.
Know that a rooted tree is a tree in which one vertex has been

designated as the root. A rooted tree has parent-child relationships between
nodes. The root is the only node with no parent and all other nodes are
descendants of the root.

Know that a binary tree is a rooted tree in which each node has at most
two children.

Be familiar with typical uses for rooted trees.

www.pmt.education

4.2.6.1 Hash tables:
Be familiar with the concept of a hash table and its uses.
Be able to apply simple hashing algorithms.
Know what is meant by a collision and how collisions are handled using

rehashing.

4.2.7.1 Dictionaries:

Be familiar with the concept of a dictionary
Be familiar with simple applications of dictionaries, for example

information retrieval, and have experience of using a dictionary data structure
in a programming language.

4.2.8.1 Vectors:

Be familiar with the concept of a vector and the following notations for
specifying a vector:

● [2.0, 3.14159, -1.0, 2.718281828]
● 4-vector over ℝ written as ℝ4
● function interpretation
● 0 ↦ 2.0
● 1 ↦ 3.14159
● 2 ↦ -1.0
● 3 ↦ 2.718281828
● ↦ means maps to

That all the entries must be drawn from the same field, eg ℝ.
Dictionary representation of a vector.
List representation of a vector.
1-D array representation of a vector.
Visualising a vector as an arrow.
Vector addition and scalar-vector multiplication.
Convex combination of two vectors, u and v.
Dot or scalar product of two vectors.
Applications of dot product.

www.pmt.education

Data structures

Data structures are used by computers as the containers within which information is
stored. Different data structures exist and some are better suited to different types of data
than others. When storing data, a programmer must decide which of the data structures
available is the best to use.

Arrays

An array is an indexed set of related elements . An array must
be finite, indexed and must only contain elements with the
same data type.

Array Names = {“George”, “Sue”, “Mo”}

The elements of an array are given an index, which often
starts from zero. For example, with the array shown above,
Names(2) would return “Mo” as the first item (“George”) is
given the index 0.

The array shown above is a one-dimensional array which could be visualised with the
following table:

0 1 2

“George” “Sue” “Mo”

Arrays can be created in many dimensions. For example, a two-dimensional array could
look like this:

Array Maze = { {Wall, Path, Wall}, {Path, Path, Wall}, {Wall, Path, Wall}}

When displayed in a table, the Maze array starts to make a little more sense:

 0 1 2 When an individual element is referenced,
the x coordinate is listed first .

For example, Maze(1,2) would return
Path and Maze(2,1) would return Wall.

0 Wall Path Wall

1 Path Path Wall

2 Wall Path Wall

www.pmt.education

Fields, records and files

Information is stored by computers as a series of files. Each file is made up of records
which are composed of a number of fields.

It’s important that you make sure you can write to and read from files in your chosen
programming language.

Abstract data types/data structures

Abstract data structures don’t exist as data structures in their own right, instead they make
use of other data structures such as arrays to form a new way of storing data .

Queues
A queue is an abstract data structure based on an array . Just like a queue at a bus stop,
the first item added to a queue is the first to be removed. Because of this, queues are
referred to as “first in, first out” (or FIFO) abstract data structures.

Queues are used by computers in keyboard buffers , where each keypress is added to the
queue and then removed when the computer has processed the keypress. This ensures
that letters appear on the screen in the same order that they were typed.

The breadth first search algorithm uses a queue to keep
track of which nodes in a network have been visited.

www.pmt.education

Linear queues
A linear queue has two pointers, a front pointer and a rear pointer. These can be used to
identify where to place a new item in a queue or to identify which item is at the front of the
queue.

The example below shows a queue with five positions, two of which are occupied. Emma
is at the front of the queue so must have been enqueued (added to the queue) before
Justin, who is at the back of the queue. The rear pointer always points to the next available
position in the queue.

Emma Justin

If we were to perform the operation Queue.Enqueue(“Zhang”), the queue would look
like this:

Emma Justin Zhang

Zhang is added behind Justin and the rear pointer moves to the next available position.

If we were to perform the operation Queue.Dequeue(), the queue would look like this:

 Justin Zhang

Emma, who was at the position of the front pointer, has been dequeued and the front
pointer has moved to Justin.

If the dequeue operation were to be performed again, Justin
would be removed from the queue, as he is now at the front
of the queue.

www.pmt.education

Operations that can be performed on a queue include Enqueue, Dequeue, IsEmpty and
IsFull. IsEmpty is a function that returns TRUE if the queue has no content. Emptiness
can be detected by comparing the front and rear pointers . If they are the same, the queue
is empty. IsFull is a function that returns TRUE if the queue has no available positions
that are behind the front pointer .

Circular queues
A circular queue is a type of queue in which the front and rear pointers can move over the
two ends of the queue, making for a more memory efficient data structure.

 Sarah Asha

When the operation Queue.Enqueue(“Hans”) is performed on the circular queue
above, the rear pointer jumps to the left hand side of the queue.

 Sarah Asha Hans

Now the operation Queue.Enqueue(“James”) can be performed. This would not have
been possible if the queue had been implemented as a linear queue as there were no
available spaces behind the front pointer . In a circular queue however, the rear pointer can
jump over the ends of the queue and make use of available spaces before the front
pointer.

James Sarah Asha Hans

The queue continues to work as before, dequeuing items from the position specified by the
front pointer. If the operation Queue.Dequeue() were performed now, Sarah would be
removed, placing Asha at the front of the queue.

James Asha Hans

www.pmt.education

Priority Queues
In a priority queue, items are assigned a priority . Items with the highest priority are
dequeued before low priority items.

In the case that two or more items have the same priority, the items are removed in the
usual first in, first out order.

Priority queues are frequently used in computer systems. For example, processors assign
time to applications according to their priority. Applications currently in use by the user are
prioritised over background applications, allowing for a faster user experience.

A school or college may enforce a priority printer queue, in which staff print jobs are
completed before those submitted by students.

Stacks
A stack is a first in, last out (FILO) abstract data structure. Like queues, stacks are often
based on an array but have just one pointer: a top pointer.

You can think of stacks as a pile of students’ books which need to be marked by a teacher.
The first book to be handed in is placed at the bottom of the stack and is the last to be
marked. The last book to be added to the stack is the first to be marked.

Operations that can be performed on a stack include Push (add an item), Pop (remove the
item at the top) and Peek. Peek is a function which returns the value of the item at the top
of the stack without actually removing the item . The functions IsFull and IsEmpty can
also be executed on stacks, just like with a queue.

www.pmt.education

Bruce �Top

Diego

Mary

Charlie �Top

Bruce

Diego

Mary

Maria �Top

Charlie

Bruce

Diego

Mary

The stack on the left contains three names. Bruce is at the
top of the stack, as indicated by the position of the top
pointer.

Mary is at the bottom of the stack, which must mean that
Mary has been in the stack for the longest.

The operation Stack.Peek() would return “Bruce” but
would not change the stack in any way.

The diagram on the left shows the state of the stack after
the operation Stack.Push(“Charlie”).

Executing the operation Stack.Pop at this stage would
remove Charlie from the stack and move the top pointer
down one position to Bruce.

The pop operation can be used to assign variables and
constants. For example, the operation x ← Stack.Pop
would assign the value “Charlie” to the variable x. This
is also applicable to the peek function.

The diagram on the left shows the state of the stack after
the operation Stack.Push(“Maria”).

Maria is now at the top of the stack and there are no
available spaces above the top pointer.

If a push command were executed now, an error would
be returned. This error is called a stack overflow and
indicates that there are no available spaces on the stack.

A similar error, called a stack underflow, can be caused by
attempting the pop command on an empty stack.

www.pmt.education

Graphs
A graph is an abstract data structure used to represent
complex relationships between items within datasets. Graphs
can be used to represent networks such as transport
networks, IT networks and the Internet.

A graph consists of nodes (sometimes called vertices) which
are joined by edges (sometimes called arcs). A weighted
graph is one in which edges are assigned a value,
representing a value such as time, distance or cost.

Unweighted, undirected graph

Weighted, directed graph

Graphs can be represented in two different ways. Using adjacency matrices or adjacency
lists. Each of the two methods has its own relative advantages and disadvantages, so
choosing the right method of representing a graph is essential when developing a solution.

www.pmt.education

Adjacency matrices
An adjacency matrix is a tabular representation of a graph. Each of the nodes in the graph
is assigned both a row and a column in the table.

Example: Unweighted graph

 A B C D E

A 0 1 1 1 0

B 1 0 1 0 1

C 1 1 0 1 1

D 1 0 1 0 1

E 0 1 1 1 0

A 1 is used to show that an edge exists
between two nodes and 0 indicates that
there is no connection .

Notice that adjacency matrices have a
characteristic diagonal line of 0s (shown in
blue) where the row and column represent
the same node.

Note also that adjacency matrices display
diagonal symmetry, as shown by the green
cells which are a reflection of the white
cells in the blue diagonal line.

Example: Weighted graph

 A B C D E

A ∞ 3 2 9 ∞

B 3 ∞ 4 ∞ ∞

C 2 4 ∞ 6 ∞

D 9 ∞ 6 ∞ 3

E ∞ ∞ ∞ 3 ∞

Rather than using Boolean values,
adjacency matrices for weighted graphs
contain the weight of a connection between
two nodes.

If no connection exists, an arbitrarily large
value is used. This will prevent any
shortest path algorithm from using any
non-existent edges. When written down,
this value is often expressed as infinity.

www.pmt.education

Adjacency lists
Rather than using a table to represent a graph, a list could be used.

A B, C, D
B A, C, E
C A, B, D, E
D A, C, E
E B, C, D

The graph on the left could be represented with the adjacency list on the right.

For each node in the graph, a list of adjacent nodes is created. This means that an
adjacency list only records existing connections in a graph, unlike an adjacency matrix
which stores even those edges that don’t exist .

Adjacency matrix Adjacency list
Stores every possible edge between
nodes, even those that don’t exist.

Almost half of the matrix is repeated data.

Memory inefficient.

Only stores the edges that exist in the
graph.

Memory efficient.

Allows a specific edge to be queried very
quickly, as it can be looked up by its row
and column.

Time efficient.

Slow to query, as each item in a list must
be searched sequentially until the desired
edge is found.

Time inefficient.

Well suited to dense graphs, where there
are a large number of edges.

Well suited to sparse graphs, where there
are few edges.

www.pmt.education

Trees
A tree is a connected, undirected graph with no cycles.

✘ Connected
✔ Undirected
✔ No cycles

✔ Connected
✘ Undirected
✔ No cycles

✔ Connected
✔ Undirected
✘ No cycles

None of the three graphs above are trees. The first is not
connected, the second is directed and the third contains
a cycle.

The graph on the left is a tree. All of the nodes are
connected, the edges are undirected and there are no
cycles.

Rooted trees
A rooted tree has a root node from which all other nodes stem. When displayed as a
diagram, the root node is usually at the top of the tree.

Nodes from which other nodes stem are called parent nodes. The root node is the only
node in a rooted tree with no parent. Nodes with a parent are called child nodes and child
nodes with no children are called leaf nodes .

Root: A
Parent: A, B, C
Child: B, C, D, E, F, G
Leaf: D, E, F, G

www.pmt.education

Binary trees
A binary tree is a rooted tree in which each parent node has
no more than two child nodes.

Rooted trees (which include Binary trees) can be used to represent family trees or file
systems on a computer’s hard drive.

Hash tables
Hash tables are a way of storing data that allows data to be
retrieved with a constant time complexity of O(1).

A hashing algorithm takes an input and returns a hash. A
hash is unique to its input and cannot be reversed to retrieve
the input value.

For example, a simple hashing algorithm is:

Value ← INPUT
Hash ← Value MOD 3
RETURN Hash

If the input were 10, the hash would be 1. The same hash
is always returned for each input.

A hash table stores key-value pairs. The key is sent to a hash function that performs
arithmetic operations on it. The resulting hash is the index of the key-value pair in the
hash table.

When an element is to be looked up in a hash table, the key is first hashed. Once the
hash has been calculated, the position in the table corresponding to that hash is queried
and the desired information is located.

Sometimes different inputs produce the same hash, for example: the hashing algorithm
above produces the same hash for the values 12 and 30. This is called a collision, and
could result in data being overwritten in a hash table in a poorly designed system.

www.pmt.education

Well designed hash tables get around collisions by using rehashing, finding an available
position according to an agreed procedure.

One simple rehashing technique is to keep on moving to the next position until an
available one is found.

The hash table below stores buildings using a hash of their height as the key. The hashing
algorithm being used is the one shown previously, which takes the building’s height and
applies the modulo 3 operation to it.

When “The Shard (310m)” is added to the hash table, the key is calculated by the hashing
algorithm as 1 (310 MOD 3 = 1). However, position 1 is already occupied by The Great
Pyramid of Giza. A collision has occurred.

Key Value

0

1 Great Pyramid of Giza (139m)

2 Empire State Building (443m)

3

4

In order to get around this collision, a rehashing algorithm is carried out. The next position
(position 2) is inspected, but is occupied, so the algorithm moves on to position 3. Position
3 is unoccupied and so The Shard is placed in position 3.

Key Value

0

1 Great Pyramid of Giza (139m)

2 Empire State Building (443m)

3 The Shard (310m)

4

When The Shard is retrieved from the hash table, the hash is calculated as 1, so the value
in position 1 is queried. The value in position 1 is not the requested value, and so the next
position is queried. This continues until the desired value is found in position 3.

www.pmt.education

Dictionaries
A dictionary is a collection of key-value pairs in which the
value is accessed by its associated key. For example, the
words in the sentence “row, row, row your boat” could be put
into a dictionary like the one below:

Key Value

1 row

2 your

3 boat

One application of dictionaries is in dictionary-based compression . The sentence “row,
row, row your boat” could be compressed as 11123 using the dictionary above.

Vectors
Vectors can be represented lists of numbers, functions or ways of representing a point in
space.

As a list of numbers [12, 7, 3, 55]

As a vector space over a field 4-vector over ℤ (ℤ 4)

As a function
0 ↦ 12
1 ↦ 7
2 ↦ 3
3 ↦ 55

As a point in space (12, 7, 3, 55)

If viewed as a function, a vector can be represented by using a dictionary . If viewed as a
list, a one-dimensional array would be suitable.

A vector can be visually represented as an arrow, for example: the two dimensional vector
[14, 4] could be represented with the arrow below.

www.pmt.education

Vector addition
Vectors can be added to achieve translation. With arrows, vectors are added “tip to tail” as
in the example below:

Alternatively, vectors can be added by adding each of their components like so:

 [14, 4]
+ [4, -2]
= [18, 2]

Scalar-vector multiplication
In order to scale a vector, each of its components are multiplied by a scalar.

 [14, 4]
× 3
= [42, 12]

Scaling a vector affects only its magnitude, not its direction.

www.pmt.education

Convex combination of two vectors
If you have two vectors, a and b, then a convex combination of the two would be ax + by
where x and y are both non-zero numbers less than one that add to 1.

For example, let a be the vector [1, 1] and b be the vector [2, 4].

Let’s choose x and y to be 0.8 and 0.2 respectively. Neither are zero and they add to 1.

Now we can form a convex combination of a and b as follows:

 ax = [0.8, 0.8]
 by = [0.4, 0.8]
ax + by = [1.2, 1.6]

As the diagram on the left shows, the
convex combination of a and b is formed
on the line that would join the tips of a and
b.

The convex combination splits the line
joining the tips of a and b in the ratio
chosen for the values x and y.

In this case, the line has been split
between 0.2 and 0.8 (20% of the way from
the tip of a to the tip of b).

Dot product
The dot product of two vectors (also called the scalar product) is a single number derived
from the components of the vectors that can be used to determine the angle between two
vectors.

The dot product of the vectors a = [12, 3] and b = [5, 8] is notated a • b (said “a
dot b”) and is calculated as follows:

a • b = (12 × 5) + (3 × 8)
 = 84

www.pmt.education

Static and dynamic data structures

Every data structure is either static or dynamic. Static data structures are fixed in size
whereas dynamic data structures change in size to store their content.

Static data structures are most frequently declared in memory as a series of sequential,
contiguous memory locations which makes them simply for the computer to maintain. The
next element will simply be in the memory location next door.

If the number of data items to be stored in a static structure exceeds the number of
memory locations allocated to the structure, an overflow error (such as a stack overflow)
will occur.

Dynamic data structures are more complicated. Because the number of memory locations
required isn’t fixed, the computer simply can’t allocate them contiguous memory locations.
Instead, each item of data in the structure is stored alongside a reference to where the
next item is stored in memory. This allows dynamic data structures to be as big or as small
as they need to be but requires more work on the part of the computer to set up and use.

If the number of data items to be stored in a dynamic structure exceeds the number of
memory locations allocated to the structure, new memory locations are simply added to
the structure until there is enough space for the data.

www.pmt.education

